Compute evaluation report for TMB/DESeq2 analysis
evaluation_report.Rd
This function computes an evaluation report for TMB/DESeq2 analysis using several graphical
summaries like precision-recall (PR) curve, Receiver operating characteristic (ROC) curve
and others. It takes as input several parameters like TMB results (l_tmb
), DESeq2
result (dds
), mock object (mock_obj
), coefficient threshold (coeff_threshold
) and
alternative hypothesis (alt_hypothesis
).
Usage
evaluation_report(
mock_obj,
list_gene = NULL,
list_tmb = NULL,
dds = NULL,
coeff_threshold = 0.69,
alt_hypothesis = "greaterAbs",
alpha_risk = 0.05,
palette_color = c(DESeq2 = "#500472", HTRfit = "#79cbb8"),
palette_shape = c(DESeq2 = 17, HTRfit = 19),
skip_eval_intercept = TRUE,
use_initial_random_params = TRUE,
...
)
Arguments
- mock_obj
Mock object that represents the distribution of measurements corresponding to mock samples.
- list_gene
A character vector specifying the genes id to be retained for evaluation. If NULL (default) all genes are used for evaluation
- list_tmb
TMB results from analysis.
- dds
DESeq2 results from differential gene expression analysis.
- coeff_threshold
A non-negative value which specifies a ln(fold change) threshold. The Threshold is used for the Wald test to determine whether the coefficient (β) is significant or not, depending on
alt_hypothesis
parameter. Default is 0.69, ln(FC = 2).- alt_hypothesis
Alternative hypothesis for the Wald test (default is "greaterAbs"). Possible choice: "greater"
β > coeff_threshold, "less"
β < −coeff_threshold, or two-tailed alternative: "greaterAbs"
|β| > coeff_threshold
- alpha_risk
parameter that sets the threshold for alpha risk level while testing coefficient (β). Default: 0.05.
- palette_color
Optional parameter that sets the color palette for plots.Default : c(DESeq2 = "#500472", HTRfit ="#79cbb8").
- palette_shape
Optional parameter that sets the point shape for plots.Default : c(DESeq2 = 17, HTRfit = 19).
- skip_eval_intercept
indicate whether to calculate precision-recall and ROC metrics for the intercept (default skip_eval_intercept = TRUE).
- use_initial_random_params
A logical value indicating whether to use initial population values (
TRUE
) or simulated values (FALSE
) for computing the actualsd
values of random effects. Recommended usage :TRUE
- ...
Additional parameters to be passed to aesthetics
get_pr_curve
andget_roc_curve
.
Value
A list containing the following components:
- identity
A list containing model parameters and dispersion data.
- precision_recall
A PR curve object generated from TMB and DESeq2 results.
- roc
A ROC curve object generated from TMB and DESeq2 results.
- counts
A counts plot generated from mock object.
- performances
A summary of the performances obtained.