Skip to contents

All functions

Area_Under_Curve()
Calculate the Area Under the Curve
ConfusionMatrix()
Confusion Matrix
accuracy()
accuracy
addBasalExpression()
Compute basal expresion for gene expression based on the coefficients data frame.
add_interaction()
Add interaction
already_init_variable()
Check if Variable is Already Initialized
anovaParallel()
Perform ANOVA on Multiple glmmTMB Models in Parallel
are_all_elements_identical()
Check if all elements in a list are identical.
averageByGroup()
Calculate average values by group
build_gg_pr_curve()
Builds a ggplot precision-recall curve.
build_gg_roc_curve()
Builds a ggplot ROC curve.
build_missingColumn_with_na()
Build DataFrame with Missing Columns and NA Values
build_sub_obj_return_to_user()
Build Sub Object to Return to User
calculate_actualMixed()
Calculate actual mixed effects.
calculate_actual_interactionX2_values()
Calculate actual interaction values between two terms in a data frame.
calculate_actual_interactionX3_values()
Calculate Actual Interaction Values for Three Fixed Effects
checkFractionOfZero()
Check Fraction of Zero or One in Counts Table
check_input2interaction()
Check input for interaction
clean_variable_name()
Clean Variable Name
combine_ground_truth()
Combine ground truth information from a list of mock objects.
combine_mock()
Combine multiple mock objects into a single mock object.
compareInferenceToExpected()
Compare inference results to expected values for a given model.
computeActualInteractionFixEff()
Compute actual interaction values for multiple interaction terms.
compute_covariation()
Compute Covariation from Correlation and Standard Deviations
compute_metrics_summary()
Compute summary metrics on classification results
compute_pr_auc()
Computes area under the precision-recall curve (AUC).
compute_pr_curve()
Computes the precision-recall curve (AUC).
compute_rmse()
Compute RMSE values on grouped data
compute_roc_auc()
Computes area under the ROC curve (AUC).
compute_roc_curve()
Computes the ROC curve.
compute_rsquare()
Compute R-squared values for linear regression on grouped data
convert2Factor()
Convert specified columns to factor
correlation_matrix_2df()
Convert Correlation Matrix to Data Frame
countMatrix_2longDtf()
Convert count matrix to long data frame
counts_plot()
Generate a density plot of gene counts
custom_matrix_transform()
Applies a custom function to a count matrix.
detect_categoricals_vars()
Detects categorical variables based on reference labels in a glmmTMB object.
detect_row_matx_bellow_threshold()
Detect rows in a matrix with all values below a given threshold
diagnostic_plot()
Plot Metrics for Generalized Linear Mixed Models (GLMM)
drop_randfx()
Drop Random Effects from a Formula
endsWithDigit()
Check if a string ends with a digit
eval_identityTerm()
Generate an identity term plot and get metrics associated
evaluation_report()
Compute evaluation report for TMB/DESeq2 analysis
export_dataframe()
Exports a dataframe to a specified file
export_eval_plots()
Exports evaluation plots from an eval_report object
export_evaluation_report()
Exports an eval_report object to a specified folder
extract_ddsDispersion()
Extract DESeq2 Dispersion Values
extract_fixed_effect()
Extract Fixed Effects from a GLMMTMB Model Summary
extract_ran_pars()
Extract Random Parameters from a glmmTMB Model
extract_tmbDispersion()
Extract TMB Dispersion Values
fillInCovarMatrice()
Fill in Covariance Matrix
fillInInteraction()
Fill in interaction
fillInVariable()
Fill in Variable
filter_dataframe()
Filter DataFrame
findAttribute()
Find Attribute
first_non_null_index()
Finds the index of the first non-null element in a list.
fitModel()
Fit a model using the fitModel function.
fitModelParallel()
Fit models in parallel for each group using mclapply and handle logging. Uses parallel_fit to fit the models.
fitUpdate()
Fit and update a GLMNB model.
generateActualForMainFixEff()
Generate actual values for a given term
generateActualInteractionX2_FixEff()
Generate actual values for the interaction fixed effect.
generateActualInteractionX3_FixEff()
Generate Actual Interaction Values for Three Fixed Effects
generateCountTable()
Generate count table
generateGridCombination_fromListVar()
Get grid combination from list_var
generateReplicationMatrix()
Generate replication matrix
generate_basal_expression()
Generate BE data.
getActualInteractionFixEff()
Get the actual interaction values for a given interaction term in the data.
getActualIntercept()
Get the intercept dataframe
getActualMainFixEff()
Get actual values for non-interaction terms
getActualMixed_type0()
Get Actual Mixed Type 0
getActualMixed_typeI()
Calculate actual mixed effect values for each gene.
getBinExpression()
Get bin expression for a data frame.
getCategoricalVar_inFixedEffect()
Get the categorical variable associated with the fixed effect in a type I formula.
getCoefficients()
getCoefficients
getColumnWithSampleID()
Get column name with sampleID
getCountsTable()
getCountsTable
getCovarianceMatrix()
getCovarianceMatrix
getData2computeActualFixEffect()
Get data for calculating actual values
getDataFromMvrnorm()
getDataFromMvrnorm
getDataFromRnorm()
Prepare data using effects from a normal distribution
getDataFromUser()
Get data from user
getDispersionComparison()
Get Dispersion Comparison
getDispersionMatrix()
getDispersionMatrix
getGeneMetadata()
getGeneMetadata
getGivenAttribute()
Get a given attribute from a list of variables
getGlance()
Extracts the summary statistics from a single glmmTMB model.
getGridCombination()
getGridCombination
getInput2mvrnorm()
getInput2mvrnorm
getInput2simulation()
Get input for simulation based on coefficients
getLabelExpected()
Get Labels for Expected Differential Expression
getLabels()
Get labels for variables
getListVar()
Get the list of variable names
getLog_qij()
Get the log_qij values from the coefficient data frame.
getMu_ij()
Calculate mu_ij values based on coefficient data frame and scaling factor
getMu_ij_matrix()
getMu_ij_matrix
getNumberOfCombinationsInInteraction()
Get the number of combinations in an interaction
getRefLevel()
Get the reference level for categorical variables in the data
getReplicationMatrix()
getReplicationMatrix
getSampleID()
getSampleID
getSampleMetadata()
Get sample metadata
getSettingsTable()
Get Setting Table
getStandardDeviationInCorrelation()
Get Standard Deviations for Variables in Correlation
getSubCountsTable()
getSubCountsTable
getTidyGlmmTMB()
Extract Tidy Summary of glmmTMB Model
getValidDispersion()
Validate and Filter Dispersion Values
get_actual_sd_2_replace()
Get actual sd values to replace based on the given formula and mock data.
get_effects_from_rnorm()
Generate effects from a normal distribution
get_eval_data()
Gets evaluation data from both TMB and DESeqDataSet (dds) objects.
get_eval_data_from_dds()
Extracts evaluation data from a DESeqDataSet (dds) object.
get_eval_data_from_ltmb()
Extracts evaluation data from a list of TMB models.
get_inference_dds()
Calculate Inference for Differential Expression Analysis
get_label_y_position()
Computes y-axis position for text labels.
get_list_of_mock_attribute()
Get a list of specified attributes from a list of mock objects.
get_mad_left_threshold()
Calculate the left threshold for MAD-based filtering.
get_mad_user_message()
Generate user message for MAD filtering.
get_messages_sequencing_depth()
Get messages related to sequencing depth
get_metrics_2plot()
Gets R-squared values for plotting.
get_ml_metrics_obj()
Get classification metrics for evaluation object
get_performances_metrics_obj()
Compute classification and regression performance metrics object
get_pr_curve()
Gets precision-recall curves and AUC for both aggregated and individual parameters.
get_pr_object()
Gets precision-recall objects for a given parameter.
get_roc_curve()
Gets ROC curves and AUC for both aggregated and individual parameters.
get_roc_object()
Gets ROC objects for a given parameter.
get_scaling_factor()
Get scaling factor for count normalization
get_violin_random_params()
Generate a Violin Plot of Random Parameters
glance_tmb()
Extracts the summary statistics from a list of glmmTMB models.
group_logQij_per_genes_and_labels()
Group log_qij values per genes and labels.
handleAnovaError()
Handle ANOVA Errors
identifyTopFit()
Identify top or low fitting observations based on specified diagnostic metric and filtering method.
inferenceToExpected_withFixedEff()
Compare the results of inference with the ground truth data.
inferenceToExpected_withMixedEff()
Compare the mixed-effects inference to expected values.
init_variable()
Initialize variable
inputs_checking()
Check Input Parameters
isValidEvalInput()
Validate input parameters for evaluation
isValidEval_report()
Checks if an eval_report object is valid
isValidExpression()
Validates a custom expression.
isValidGlmmTmb()
Check if a glmmTMB object is valid
isValidInput2fit()
Check if Data is Valid for Model Fitting
isValidList_tmb()
Check if a list of glmmTMB objects is valid
isValidMock_obj()
Checks if an object corresponds to a mock object generated by mock_rnaseq().
is_dispersionMatrixValid()
Check the validity of the dispersion matrix
is_formula_mixedType0()
Check if the formula follows a specific type I mixed effect structure.
is_formula_mixedTypeI()
Check if the formula follows a specific type I mixed effect structure.
is_fullrank()
Check if a Model Matrix is Full Rank
is_mixedEffect_inFormula()
Check if the formula contains a mixed effect structure.
is_positive_definite()
Check if a matrix is positive definite This function checks whether a given matrix is positive definite, i.e., all of its eigenvalues are positive.
is_truthLabels_valid()
Check Validity of Truth Labels
is_validGroupBy()
Check if group by exist in data
join_dtf()
Join two data frames using data.table
launchFit()
Launch the model fitting process for a specific group.
launchUpdate()
Launch the update process for a GLMNB model.
medianRatioNormalization()
Apply Median Ratio Normalization to a Counts Matrix
mock_rnaseq()
Perform RNA-seq simulation
parallel_fit()
Fit models in parallel for each group using mclapply and handle logging. Uses parallel_fit to fit the models.
parallel_update()
Internal function to fit glmmTMB models in parallel.
performance-class
Class performance
performance()
Function to create performance objects
precision()
precision
prediction-class
Class prediction
prediction()
Function to create prediction objects
prepareData2computeInteraction()
Prepare data for computing interaction values.
prepareData2fit()
Prepares data for fitting.
prepare_dataParallel()
Fit the model based using fitModel functions.
rbind_evaldata_tmb_dds()
Combines evaluation data from TMB and DESeqDataSet (dds) objects.
rbind_model_params_and_dispersion()
Combines model parameters and dispersion data frames.
recall()
recall
relevel_list_tmb_frame()
Re-levels categorical variables in a the frame of a list of glmmTMB objects.
relevelling_factors()
Relevels factors in a list of glmmTMB objects using specified reference labels.
removeDigitsAtEnd()
Remove digits at the end of a string
removeDuplicatedWord()
Remove Duplicated Words from Strings
renameColumns()
Rename Columns in a Data Frame
rename_genes_in_mock_obj()
Rename genes in a mock object by adding a specific index.
reorderColumns()
Reorder the columns of a dataframe
replaceUnexpectedInteractionValuesBy0()
Replace the effect by 0 in the data
replace_actual()
Replace actual values in params_df based on specified index and list of actual values.
replicateByGroup()
Replicate rows of a data frame by group
replicateMatrix()
Replicate matrix
replicateRows()
Replicate rows of a data frame
rmse()
Root Mean Squared Error (RMSE)
samplingFromMvrnorm()
getDataFromMvrnorm
scaleCountsTable()
Scale Counts Table
sensitivity()
sensitivity
set_correlation()
Set Correlation between Variables
specificity()
specificity
subsetByTermLabel()
subset data By Term Label
subsetFixEffectInferred()
Subset Fixed Effect Inferred Terms
subsetGenes()
Subset Genes in Genomic Data
subset_glance()
Subset the glance DataFrame based on selected variables.
theme_htrfit()
Custom Theme for htrfit Plots
tidy_results()
Perform statistical tests and return tidy results
tidy_tmb()
Extract Tidy Summary of Multiple glmmTMB Models
trimmedMeanMvaluesNormalization()
Normalize count data using Trimmed Mean of M-values (TMM) method
updateParallel()
Update glmmTMB models in parallel.
wald_test()
Wald test for hypothesis testing - new implementation (v2.1.1) adapted from the DESeq2 package.
warning_too_low_mu_ij_row()
Emit a warning message for rows with low mu_ij values
wrap_dds()
Wrapper Function for DESeq2 Analysis
wrapper_var_cor()
Wrapper for Extracting Variance-Covariance Components