Function reference
-
Area_Under_Curve()
- Calculate the Area Under the Curve
-
ConfusionMatrix()
- Confusion Matrix
-
accuracy()
- accuracy
-
addBasalExpression()
- Compute basal expresion for gene expression based on the coefficients data frame.
-
add_interaction()
- Add interaction
-
already_init_variable()
- Check if Variable is Already Initialized
-
anovaParallel()
- Perform ANOVA on Multiple glmmTMB Models in Parallel
-
are_all_elements_identical()
- Check if all elements in a list are identical.
-
averageByGroup()
- Calculate average values by group
-
build_gg_pr_curve()
- Builds a ggplot precision-recall curve.
-
build_gg_roc_curve()
- Builds a ggplot ROC curve.
-
build_missingColumn_with_na()
- Build DataFrame with Missing Columns and NA Values
-
build_sub_obj_return_to_user()
- Build Sub Object to Return to User
-
calculate_actualMixed()
- Calculate actual mixed effects.
-
calculate_actual_interactionX2_values()
- Calculate actual interaction values between two terms in a data frame.
-
calculate_actual_interactionX3_values()
- Calculate Actual Interaction Values for Three Fixed Effects
-
checkFractionOfZero()
- Check Fraction of Zero or One in Counts Table
-
check_input2interaction()
- Check input for interaction
-
clean_variable_name()
- Clean Variable Name
-
combine_ground_truth()
- Combine ground truth information from a list of mock objects.
-
combine_mock()
- Combine multiple mock objects into a single mock object.
-
compareInferenceToExpected()
- Compare inference results to expected values for a given model.
-
computeActualInteractionFixEff()
- Compute actual interaction values for multiple interaction terms.
-
compute_covariation()
- Compute Covariation from Correlation and Standard Deviations
-
compute_metrics_summary()
- Compute summary metrics on classification results
-
compute_pr_auc()
- Computes area under the precision-recall curve (AUC).
-
compute_pr_curve()
- Computes the precision-recall curve (AUC).
-
compute_rmse()
- Compute RMSE values on grouped data
-
compute_roc_auc()
- Computes area under the ROC curve (AUC).
-
compute_roc_curve()
- Computes the ROC curve.
-
compute_rsquare()
- Compute R-squared values for linear regression on grouped data
-
convert2Factor()
- Convert specified columns to factor
-
correlation_matrix_2df()
- Convert Correlation Matrix to Data Frame
-
countMatrix_2longDtf()
- Convert count matrix to long data frame
-
counts_plot()
- Generate a density plot of gene counts
-
custom_matrix_transform()
- Applies a custom function to a count matrix.
-
detect_categoricals_vars()
- Detects categorical variables based on reference labels in a glmmTMB object.
-
detect_row_matx_bellow_threshold()
- Detect rows in a matrix with all values below a given threshold
-
diagnostic_plot()
- Plot Metrics for Generalized Linear Mixed Models (GLMM)
-
drop_randfx()
- Drop Random Effects from a Formula
-
endsWithDigit()
- Check if a string ends with a digit
-
eval_identityTerm()
- Generate an identity term plot and get metrics associated
-
evaluation_report()
- Compute evaluation report for TMB/DESeq2 analysis
-
export_dataframe()
- Exports a dataframe to a specified file
-
export_eval_plots()
- Exports evaluation plots from an eval_report object
-
export_evaluation_report()
- Exports an eval_report object to a specified folder
-
extract_ddsDispersion()
- Extract DESeq2 Dispersion Values
-
extract_fixed_effect()
- Extract Fixed Effects from a GLMMTMB Model Summary
-
extract_ran_pars()
- Extract Random Parameters from a glmmTMB Model
-
extract_tmbDispersion()
- Extract TMB Dispersion Values
-
fillInCovarMatrice()
- Fill in Covariance Matrix
-
fillInInteraction()
- Fill in interaction
-
fillInVariable()
- Fill in Variable
-
filter_dataframe()
- Filter DataFrame
-
findAttribute()
- Find Attribute
-
first_non_null_index()
- Finds the index of the first non-null element in a list.
-
fitModel()
- Fit a model using the fitModel function.
-
fitModelParallel()
- Fit models in parallel for each group using mclapply and handle logging. Uses parallel_fit to fit the models.
-
fitUpdate()
- Fit and update a GLMNB model.
-
generateActualForMainFixEff()
- Generate actual values for a given term
-
generateActualInteractionX2_FixEff()
- Generate actual values for the interaction fixed effect.
-
generateActualInteractionX3_FixEff()
- Generate Actual Interaction Values for Three Fixed Effects
-
generateCountTable()
- Generate count table
-
generateGridCombination_fromListVar()
- Get grid combination from list_var
-
generateReplicationMatrix()
- Generate replication matrix
-
generate_basal_expression()
- Generate BE data.
-
getActualInteractionFixEff()
- Get the actual interaction values for a given interaction term in the data.
-
getActualIntercept()
- Get the intercept dataframe
-
getActualMainFixEff()
- Get actual values for non-interaction terms
-
getActualMixed_type0()
- Get Actual Mixed Type 0
-
getActualMixed_typeI()
- Calculate actual mixed effect values for each gene.
-
getBinExpression()
- Get bin expression for a data frame.
-
getCategoricalVar_inFixedEffect()
- Get the categorical variable associated with the fixed effect in a type I formula.
-
getCoefficients()
- getCoefficients
-
getColumnWithSampleID()
- Get column name with sampleID
-
getCountsTable()
- getCountsTable
-
getCovarianceMatrix()
- getCovarianceMatrix
-
getData2computeActualFixEffect()
- Get data for calculating actual values
-
getDataFromMvrnorm()
- getDataFromMvrnorm
-
getDataFromRnorm()
- Prepare data using effects from a normal distribution
-
getDataFromUser()
- Get data from user
-
getDispersionComparison()
- Get Dispersion Comparison
-
getDispersionMatrix()
- getDispersionMatrix
-
getGeneMetadata()
- getGeneMetadata
-
getGivenAttribute()
- Get a given attribute from a list of variables
-
getGlance()
- Extracts the summary statistics from a single glmmTMB model.
-
getGridCombination()
- getGridCombination
-
getInput2mvrnorm()
- getInput2mvrnorm
-
getInput2simulation()
- Get input for simulation based on coefficients
-
getLabelExpected()
- Get Labels for Expected Differential Expression
-
getLabels()
- Get labels for variables
-
getListVar()
- Get the list of variable names
-
getLog_qij()
- Get the log_qij values from the coefficient data frame.
-
getMu_ij()
- Calculate mu_ij values based on coefficient data frame and scaling factor
-
getMu_ij_matrix()
- getMu_ij_matrix
-
getNumberOfCombinationsInInteraction()
- Get the number of combinations in an interaction
-
getRefLevel()
- Get the reference level for categorical variables in the data
-
getReplicationMatrix()
- getReplicationMatrix
-
getSampleID()
- getSampleID
-
getSampleMetadata()
- Get sample metadata
-
getSettingsTable()
- Get Setting Table
-
getStandardDeviationInCorrelation()
- Get Standard Deviations for Variables in Correlation
-
getSubCountsTable()
- getSubCountsTable
-
getTidyGlmmTMB()
- Extract Tidy Summary of glmmTMB Model
-
getValidDispersion()
- Validate and Filter Dispersion Values
-
get_actual_sd_2_replace()
- Get actual sd values to replace based on the given formula and mock data.
-
get_effects_from_rnorm()
- Generate effects from a normal distribution
-
get_eval_data()
- Gets evaluation data from both TMB and DESeqDataSet (dds) objects.
-
get_eval_data_from_dds()
- Extracts evaluation data from a DESeqDataSet (dds) object.
-
get_eval_data_from_ltmb()
- Extracts evaluation data from a list of TMB models.
-
get_inference_dds()
- Calculate Inference for Differential Expression Analysis
-
get_label_y_position()
- Computes y-axis position for text labels.
-
get_list_of_mock_attribute()
- Get a list of specified attributes from a list of mock objects.
-
get_mad_left_threshold()
- Calculate the left threshold for MAD-based filtering.
-
get_mad_user_message()
- Generate user message for MAD filtering.
-
get_messages_sequencing_depth()
- Get messages related to sequencing depth
-
get_metrics_2plot()
- Gets R-squared values for plotting.
-
get_ml_metrics_obj()
- Get classification metrics for evaluation object
-
get_performances_metrics_obj()
- Compute classification and regression performance metrics object
-
get_pr_curve()
- Gets precision-recall curves and AUC for both aggregated and individual parameters.
-
get_pr_object()
- Gets precision-recall objects for a given parameter.
-
get_roc_curve()
- Gets ROC curves and AUC for both aggregated and individual parameters.
-
get_roc_object()
- Gets ROC objects for a given parameter.
-
get_scaling_factor()
- Get scaling factor for count normalization
-
get_violin_random_params()
- Generate a Violin Plot of Random Parameters
-
glance_tmb()
- Extracts the summary statistics from a list of glmmTMB models.
-
group_logQij_per_genes_and_labels()
- Group log_qij values per genes and labels.
-
handleAnovaError()
- Handle ANOVA Errors
-
identifyTopFit()
- Identify top or low fitting observations based on specified diagnostic metric and filtering method.
-
inferenceToExpected_withFixedEff()
- Compare the results of inference with the ground truth data.
-
inferenceToExpected_withMixedEff()
- Compare the mixed-effects inference to expected values.
-
init_variable()
- Initialize variable
-
inputs_checking()
- Check Input Parameters
-
isValidEvalInput()
- Validate input parameters for evaluation
-
isValidEval_report()
- Checks if an eval_report object is valid
-
isValidExpression()
- Validates a custom expression.
-
isValidGlmmTmb()
- Check if a glmmTMB object is valid
-
isValidInput2fit()
- Check if Data is Valid for Model Fitting
-
isValidList_tmb()
- Check if a list of glmmTMB objects is valid
-
isValidMock_obj()
- Checks if an object corresponds to a mock object generated by
mock_rnaseq()
.
-
is_dispersionMatrixValid()
- Check the validity of the dispersion matrix
-
is_formula_mixedType0()
- Check if the formula follows a specific type I mixed effect structure.
-
is_formula_mixedTypeI()
- Check if the formula follows a specific type I mixed effect structure.
-
is_fullrank()
- Check if a Model Matrix is Full Rank
-
is_mixedEffect_inFormula()
- Check if the formula contains a mixed effect structure.
-
is_positive_definite()
- Check if a matrix is positive definite This function checks whether a given matrix is positive definite, i.e., all of its eigenvalues are positive.
-
is_truthLabels_valid()
- Check Validity of Truth Labels
-
is_validGroupBy()
- Check if group by exist in data
-
join_dtf()
- Join two data frames using data.table
-
launchFit()
- Launch the model fitting process for a specific group.
-
launchUpdate()
- Launch the update process for a GLMNB model.
-
medianRatioNormalization()
- Apply Median Ratio Normalization to a Counts Matrix
-
mock_rnaseq()
- Perform RNA-seq simulation
-
parallel_fit()
- Fit models in parallel for each group using mclapply and handle logging. Uses parallel_fit to fit the models.
-
parallel_update()
- Internal function to fit glmmTMB models in parallel.
-
performance-class
- Class
performance
-
performance()
- Function to create performance objects
-
precision()
- precision
-
prediction-class
- Class
prediction
-
prediction()
- Function to create prediction objects
-
prepareData2computeInteraction()
- Prepare data for computing interaction values.
-
prepareData2fit()
- Prepares data for fitting.
-
prepare_dataParallel()
- Fit the model based using fitModel functions.
-
rbind_evaldata_tmb_dds()
- Combines evaluation data from TMB and DESeqDataSet (dds) objects.
-
rbind_model_params_and_dispersion()
- Combines model parameters and dispersion data frames.
-
recall()
- recall
-
relevel_list_tmb_frame()
- Re-levels categorical variables in a the frame of a list of glmmTMB objects.
-
relevelling_factors()
- Relevels factors in a list of glmmTMB objects using specified reference labels.
-
removeDigitsAtEnd()
- Remove digits at the end of a string
-
removeDuplicatedWord()
- Remove Duplicated Words from Strings
-
renameColumns()
- Rename Columns in a Data Frame
-
rename_genes_in_mock_obj()
- Rename genes in a mock object by adding a specific index.
-
reorderColumns()
- Reorder the columns of a dataframe
-
replaceUnexpectedInteractionValuesBy0()
- Replace the effect by 0 in the data
-
replace_actual()
- Replace actual values in params_df based on specified index and list of actual values.
-
replicateByGroup()
- Replicate rows of a data frame by group
-
replicateMatrix()
- Replicate matrix
-
replicateRows()
- Replicate rows of a data frame
-
rmse()
- Root Mean Squared Error (RMSE)
-
samplingFromMvrnorm()
- getDataFromMvrnorm
-
scaleCountsTable()
- Scale Counts Table
-
sensitivity()
- sensitivity
-
set_correlation()
- Set Correlation between Variables
-
specificity()
- specificity
-
subsetByTermLabel()
- subset data By Term Label
-
subsetFixEffectInferred()
- Subset Fixed Effect Inferred Terms
-
subsetGenes()
- Subset Genes in Genomic Data
-
subset_glance()
- Subset the glance DataFrame based on selected variables.
-
theme_htrfit()
- Custom Theme for htrfit Plots
-
tidy_results()
- Perform statistical tests and return tidy results
-
tidy_tmb()
- Extract Tidy Summary of Multiple glmmTMB Models
-
trimmedMeanMvaluesNormalization()
- Normalize count data using Trimmed Mean of M-values (TMM) method
-
updateParallel()
- Update glmmTMB models in parallel.
-
wald_test()
- Wald test for hypothesis testing - new implementation (v2.1.1) adapted from the DESeq2 package.
-
warning_too_low_mu_ij_row()
- Emit a warning message for rows with low mu_ij values
-
wrap_dds()
- Wrapper Function for DESeq2 Analysis
-
wrapper_var_cor()
- Wrapper for Extracting Variance-Covariance Components