Skip to contents

This function subsets the tidy TMB object to extract the fixed effect inferred terms along with their categorization into interaction and non-interaction terms.

Usage

subsetFixEffectInferred(tidy_tmb)

Arguments

tidy_tmb

The tidy TMB object containing the inferred terms.

Value

A list with two elements:

fixed_term

A list with two components - nonInteraction and interaction, containing the names of the fixed effect inferred terms categorized as non-interaction and interaction terms, respectively.

data

A data frame containing the subset of tidy_tmb that contains the fixed effect inferred terms.

Examples

input_var_list <- init_variable()
#> Variable name should not contain digits, spaces, or special characters.
#> If any of these are present, they will be removed from the variable name.
mock_data <- mock_rnaseq(input_var_list, 10, 2, 2)
#> Building mu_ij matrix
#> INFO: 3 genes have all(mu_ij) < 1, indicating very low counts. Consider removing them for future analysis using prepareData2fit with row_threshold = 10. To detect them in future experiment, try increasing sequencing depth.
#> k_ij ~ Nbinom(mu_ij, dispersion)
#> Counts simulation: Done
getData2computeActualFixEffect(mock_data$groundTruth$effect)
#> $categorical_vars
#> [1] "label_myVariable"
#> 
#> $data
#>    logQij_mean geneID label_myVariable
#> 1  -0.21939355  gene1      myVariable1
#> 2  -0.07650958 gene10      myVariable1
#> 3  -0.07440024  gene2      myVariable1
#> 4  -0.14203778  gene3      myVariable1
#> 5   0.65985327  gene4      myVariable1
#> 6   0.17237846  gene5      myVariable1
#> 7  -0.04701527  gene6      myVariable1
#> 8   0.26400485  gene7      myVariable1
#> 9  -0.29151302  gene8      myVariable1
#> 10 -0.06407246  gene9      myVariable1
#> 11  0.12325653  gene1      myVariable2
#> 12  0.08816353 gene10      myVariable2
#> 13 -0.03715441  gene2      myVariable2
#> 14 -0.09440288  gene3      myVariable2
#> 15  0.14988639  gene4      myVariable2
#> 16 -0.39895007  gene5      myVariable2
#> 17  0.15049336  gene6      myVariable2
#> 18 -0.03270347  gene7      myVariable2
#> 19  0.03114311  gene8      myVariable2
#> 20 -0.21287183  gene9      myVariable2
#> 
data2fit = prepareData2fit(countMatrix = mock_data$counts, metadata =  mock_data$metadata )
#-- fit data
resFit <- fitModelParallel(formula = kij ~ myVariable   ,
                           data = data2fit, group_by = "geneID",
                           family = glmmTMB::nbinom2(link = "log"), n.cores = 1) 
#> Log file location: /tmp/RtmpS86cq0/htrfit.log
#> CPU(s) number : 1
#> Cluster type : PSOCK
tidy_tmb <- tidy_tmb(resFit)
subsetFixEffectInferred(tidy_tmb)
#> $fixed_term
#> $fixed_term$nonInteraction
#> [1] "myVariable2"
#> 
#> $fixed_term$interaction
#> character(0)
#> 
#> 
#> $data
#>        ID effect component group        term      estimate    std.error
#> 1   gene1  fixed      cond    NA (Intercept) -4.316869e-08 7.071068e-01
#> 2   gene1  fixed      cond    NA myVariable2 -1.828676e+01 5.135364e+03
#> 3  gene10  fixed      cond    NA (Intercept) -1.900518e+01 6.708576e+03
#> 4  gene10  fixed      cond    NA myVariable2  1.969833e+01 6.708576e+03
#> 5   gene2  fixed      cond    NA (Intercept) -1.448419e-08 7.071070e-01
#> 6   gene2  fixed      cond    NA myVariable2  4.054652e-01 9.128709e-01
#> 7   gene3  fixed      cond    NA (Intercept) -6.931258e-01 9.999892e-01
#> 8   gene3  fixed      cond    NA myVariable2 -3.454563e-05 1.414211e+00
#> 9   gene4  fixed      cond    NA (Intercept)  3.187481e-08 7.071238e-01
#> 10  gene4  fixed      cond    NA myVariable2  1.970834e-08 1.000024e+00
#> 11  gene5  fixed      cond    NA (Intercept) -1.838388e-07 7.071053e-01
#> 12  gene5  fixed      cond    NA myVariable2 -1.376700e-07 9.999981e-01
#> 13  gene6  fixed      cond    NA (Intercept)  4.054650e-01 7.188588e-01
#> 14  gene6  fixed      cond    NA myVariable2 -1.098612e+00 1.303910e+00
#> 15  gene7  fixed      cond    NA (Intercept)  4.054651e-01 5.773789e-01
#> 16  gene7  fixed      cond    NA myVariable2 -4.054651e-01 9.128918e-01
#> 17  gene8  fixed      cond    NA (Intercept) -1.824920e+01 5.082121e+03
#> 18  gene8  fixed      cond    NA myVariable2  1.824920e+01 5.082122e+03
#> 19  gene9  fixed      cond    NA (Intercept) -6.931469e-01 9.999998e-01
#> 20  gene9  fixed      cond    NA myVariable2 -2.239913e+01 5.169240e+04
#>        statistic   p.value
#> 1  -6.104974e-08 1.0000000
#> 2  -3.560948e-03 0.9971588
#> 3  -2.832968e-03 0.9977396
#> 4   2.936291e-03 0.9976572
#> 5  -2.048373e-08 1.0000000
#> 6   4.441648e-01 0.6569234
#> 7  -6.931332e-01 0.4882259
#> 8  -2.442750e-05 0.9999805
#> 9   4.507671e-08 1.0000000
#> 10  1.970786e-08 1.0000000
#> 11 -2.599878e-07 0.9999998
#> 12 -1.376702e-07 0.9999999
#> 13  5.640398e-01 0.5727271
#> 14 -8.425516e-01 0.3994793
#> 15  7.022513e-01 0.4825225
#> 16 -4.441546e-01 0.6569308
#> 17 -3.590862e-03 0.9971349
#> 18  3.590862e-03 0.9971349
#> 19 -6.931470e-01 0.4882173
#> 20 -4.333157e-04 0.9996543
#>