Skip to contents

This function computes metrics object for both classification and regression performance from evaluation objects generated by evaluation_report function. Metrics object contains the by-parameter and aggregate metrics for PR AUC, ROC AUC, R-squared and other classification metrics for precision, recall, sensitivity, and specificity. The function takes as input various evaluation objects including R-squared values (r2_params), dispersion values (r2_dispersion), PR object (pr_obj), ROC object (roc_obj), and machine learning performance metrics object (ml_metrics_obj). The function generates separate data frames for metric values by parameter value and for the aggregated metric values.

Usage

get_performances_metrics_obj(
  r2_params,
  r2_agg,
  r2_dispersion,
  pr_obj,
  roc_obj,
  ml_metrics_obj
)

Arguments

r2_params

R-squared and RMSE values from model parameters evaluation object.

r2_agg

R-squared and RMSE values aggregated.

r2_dispersion

R-squared and RMSE values from dispersion evaluation object.

pr_obj

PR object generated from evaluation report.

roc_obj

ROC object generated from evaluation report.

ml_metrics_obj

Machine learning performance metrics object.

Value

A list containing separate data frames for by-parameter and aggregated metric values.